A Bayesian Shrinkage Approach for AMMI Models
نویسندگان
چکیده
منابع مشابه
A Bayesian Shrinkage Approach for AMMI Models
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولBayesian Approach to Wavelet Decomposition and Shrinkage
We consider Bayesian approach to wavelet decomposition. We show how prior knowledge about a function's regularity can be incorporated into a prior model for its wavelet coeecients by establishing a relationship between the hyperparameters of the proposed model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relation may be seen as giving insig...
متن کاملBayesian Wavelet Shrinkage for Nonparametric Mixed-effects Models
The main purpose of this article is to study the wavelet shrinkage method from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and used for interpretation of the Bayesian structure. Bayes and empirical Bayes estimation are discussed. The latter is shown to have the Gauss-Markov type optimality (i.e., BLUP), to be equivalent to a method of regularization estimator (MORE), a...
متن کاملBayesian shrinkage
Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2015
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0131414